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Abstract—We prove that the set of all Lambertian reflectance functions (the mapping from surface normals to intensities) obtained with

arbitrary distant light sources lies close to a 9D linear subspace. This implies that, in general, the set of images of a convex Lambertian

object obtained under a wide variety of lighting conditions can be approximated accurately by a low-dimensional linear subspace,

explaining prior empirical results. We also provide a simple analytic characterization of this linear space. We obtain these results by

representing lighting using spherical harmonics and describing the effects of Lambertian materials as the analog of a convolution. These

results allow us to construct algorithms for object recognition based on linear methods as well as algorithms that use convex optimization to

enforce nonnegative lighting functions. We also show a simple way to enforce nonnegative lighting when the images of an object lie near a

4D linear space. We apply these algorithms to perform face recognition by finding the 3D model that best matches a 2D query image.

Index Terms—Face recognition, illumination, Lambertian, linear subspaces, object recognition, specular, spherical harmonics.
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1 INTRODUCTION

VARIABILITY in lighting has a large effect on the
appearance of objects in images, as is illustrated in

Fig. 1. But we show in this paper that the set of images an
object produces under different lighting conditions can, in
some cases, be simply characterized as a nine dimensional
subspace in the space of all possible images. This
characterization can be used to construct efficient recogni-
tion algorithms that handle lighting variations.

Under normal conditions, light coming from all direc-
tions illuminates an object. When the sources of light are
distant from an object, we may describe the lighting
conditions by specifying the intensity of light as a function
of its direction. Light, then, can be thought of as a
nonnegative function on the surface of a sphere. This
allows us to represent scenes in which light comes from
multiple sources, such as a room with a few lamps and,
also, to represent light that comes from extended sources,
such as light from the sky, or light reflected off a wall.

Our analysis begins by representing these lighting func-
tions using spherical harmonics. This is analogous to Fourier
analysis, but on the surface of the sphere. With this
representation, low-frequency light, for example, means light
whose intensity varies slowly as a function of direction. To
model the way diffuse surfaces turn light into an image, we
look at the amount of light reflected as a function of the
surface normal (assuming unit albedo), for each lighting
condition. We show that these reflectance functions are
produced through the analog of a convolution of the lighting
function using a kernel that represents Lambert’s reflection.
This kernel acts as a low-pass filter with 99.2 percent of its
energy in the first nine components, the zero, first, and second
order harmonics. (This part of our analysis was derived

independently also by Ramamoorthi and Hanrahan [31].) We
use this and the nonnegativity of light to prove that under any
lighting conditions, a nine-dimensional linear subspace, for
example, accounts for at least 98 percent of the variability in
the reflectance function. This suggests that in general the set
of images of a convex, Lambertian object can be approxi-
mated accurately by a low-dimensional linear subspace. We
further show how to analytically derive this subspace from a
model of an object that includes 3D structure and albedo.

To provide some intuition about these results, consider
the example shown in Fig. 2. The figure shows a white
sphere made of diffuse material, illuminated by three distant
lights. The lighting function can be described in this case as
the sum of three delta functions. The image of the sphere,
however, is smoothly shaded. If we look at a cross-section of
the reflectance function, describing how the sphere reflects
light, we can see that it is a very smoothed version of three
delta functions. The diffuse material acts as a filter, so that
the reflected light varies much more slowly than the
incoming light.

Our results help to explain recent experimental work (e.g.,
Epstein et al. [10], Hallinan [15], Yuille et al. [40]) that has
indicated that the set of images produced by an object under a
wide range of lighting conditions lies near a low dimensional
linear subspace in the space of all possible images. Our results
also allow us to better understand several existing recogni-
tion methods. For example, previous work showed that, if we
restrict every point on the surface of a diffuse object to face
every light source (that is, ignoring attached shadows), then
the set of images of the object lies in a 3D linear space (e.g.,
Shashua [34] and Moses [26]). Our analysis shows that, in fact,
this approach uses the linear space spanned by the three first
order harmonics, but omits the significant zeroth order (DC)
component. Koenderink and van Doorn [21] augmented this
space in order to account for an additional, perfect diffuse
component. The additional component in their method is the
missing DC component.

Our analysis also leads us to new methods of recognizing
objects with unknown pose and lighting conditions. In
particular, we discuss how the harmonic basis, which is
derived analytically from a model of an object, can be used in
a linear subspace-based object recognition algorithm, in place
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of a basis derived by performing SVD on large collections of
rendered images. Furthermore, we show how we can enforce
the constraint that light is nonnegative everywhere by
projecting this constraint to the space spanned by the
harmonic basis. With this constraint recognition is expressed
as a nonnegative least-squares problem that can be solved
using convex optimization. This leads to an algorithm for
recognizing objects under varying pose and illumination that
resembles Georghiades et al. [12], but works in a low-
dimensional space that is derived analytically from a model.
The use of the harmonic basis, in this case, allows us to rapidly
produce a representation to the images of an object in poses
determined at runtime. Finally, we discuss the case in which a
first order approximation provides an adequate approxima-
tion to the images of an object. The set of images then lies near
a 4D linear subspace. In this case, we can express the
nonnegative lighting constraint analytically. We use this
expression to perform recognition in a particularly efficient
way, without complex, iterative optimization techniques.

The paper is divided as follows: Section 2 briefly reviews
the relevant studies. Section 3 presents our analysis of
Lambertian reflectance. Section 4 uses this analysis to derive
new algorithms for object recognition. Finally, Section 5
discusses extensions to specular reflectance.

2 PAST APPROACHES

Our work is related to a number of recent approaches to object
recognition that represent the set of images that an object can
produce using low-dimensional linear subspaces of the space
of all images. Ullman and Basri [38] analytically derive such a
representation for sets of 3D points undergoing scaled
orthographic projection. Shashua [34] and Moses [26] (see
also Nayar and Murase [28] and Zhao and Yang [41]) derive a
3D linear representation of the set of images produced by a
Lambertian object as lighting changes, but ignoring shadows.
Hayakawa [16] uses factorization to build 3D models using
this linear representation. Koenderink and van Doorn [21]
extend this to a 4D space by allowing the light to include a
diffuse component. Our work differs from these in that our

representation accounts for attached shadows. These shadows
occur when a surface faces away from a light source. We do
not account for cast shadows, which occur when an
intervening part of an object blocks the light from reaching
a different part of the surface. For convex objects, only
attached shadows occur. As is mentioned in Section 1, we
show below that the 4D space used by Koenderink and van
Doorn is in fact the space obtained by a first order harmonic
approximation of the images of the object. The 3D space used
by Shashua, Moses, and Hayakawa is the same space, but it
lacks the significant DC component.

Researchers have collected large sets of images and
performed PCA to build representations that capture within
class variations (e.g., Kirby and Sirovich [19], Turk and
Pentland [37], and Cootes et al. [7]) and variations due to
pose and lighting (Murase and Nayar [27], Hallinan [15],
Belhumeur et al. [3], and Yuille et al. [40]; see also
Malzbender et al. [24]). This approach and its variations
have been extremely popular in the last decade, particularly
in applications to face recognition. Hallinan [15], Epstein et
al. [10], and Yuille et al. [40] perform experiments that show
that large numbers of images of real, Lambertian objects,
taken with varied lighting conditions, do lie near a low-
dimensional linear space, justifying this representation.

Belhumeur and Kriegman [4] have shown that the set of
images of an object under arbitrary illumination forms a
convex cone in the space of all possible images. This analysis
accounts for attached shadows. In addition, for convex,
Lambertian objects, they have shown that this cone (called
the illumination cone) may have unbounded dimension. They
have further shown how to construct the cone from as few as
three images. Georghiades et al. [11], [12] use this representa-
tion for object recognition. To simplify the representation (an
accurate representation of the illumination cone requires all
the images that can be obtained with a single directional
source), they further projected the images to low-dimen-
sional subspaces obtained by rendering the objects and
applying PCA to the rendered images. Our analysis allows us
to further simplify this process by using instead the harmonic
basis, which is derived analytically from a model of the
object. This leads to a significant speed up of the recognition
process (see Section 4).

Spherical harmonics have been used in graphics to
efficiently represent the bidirectional reflection distribution
function (BRDF) of different materials by, e.g., Cabral et al. [6]
and Westin et al. [39]. Koenderink and van Doorn [20]
proposed replacing the spherical harmonics basis with a basis
for functions on the half-sphere that is derived from the
Zernike polynomials, since BRDFs are defined over a half
sphere. Nimeroff et al. [29], Dobashi et al. [8], and Teo et al.
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Fig. 1. The same face, under two different lighting conditions.

Fig. 2. On the left, a white sphere illuminated by three directional (distant point) sources of light. All the lights are parallel to the image plane, one
source illuminates the sphere from above and the two others illuminate the sphere from diagonal directions. In the middle, a cross-section of the
lighting function with three peaks corresponding to the three light sources. On the right, a cross-section indicating how the sphere reflects light. We
will make precise the intuition that the material acts as a low-pass filtering, smoothing the light as it reflects it.



[35] explore specific lighting configurations (e.g., daylight)
that can be represented efficiently as a linear combination of
basis lightings. Dobashi et al. [8], in particular, use spherical
harmonics to form such a basis.

Miller and Hoffman [25] were first to describe the process
of turning incoming light into reflection as a convolution.
D’Zmura [9] describes this process in terms of spherical
harmonics. With this representation, after truncating high
order components, the reflection process can be written as a
linear transformation and, so, the low-order components of
the lighting can be recovered by inverting the transformation.
He used this analysis to explore ambiguities in lighting. We
extend this work by deriving subspace results for the
reflectance function, providing analytic descriptions of the
basis images, and constructing new recognition algorithms
that use this analysis while enforcing nonnegative lighting.

Independent of and contemporaneous with our work,
Ramamoorthi and Hanrahan [31], [32], [33] have described
the effect of Lambertian reflectance as a convolution and
analyzed it in terms of spherical harmonics. Like D’Zmura,
they use this analysis to explore the problem of recovering
lighting from reflectances. Both the work of Ramamoorthi
and Hanrahan and ours (first described in [1]) show that
Lambertian reflectance acts as a low-pass filter with most of
the energy in the first nine components. In addition to this, we
show that the space spanned by the first nine harmonics
accurately approximates the reflectance function under any
light configuration, even when the light is dominated by high
frequencies. Furthermore, we show how to use this space for
object recognition.

Since the first introduction of our work, a number of
related papers have further used and extended these ideas in
a number of directions. Specifically, Ramamoorthi [30]
analyzed the relationship between the principal components
of the images produced by an object and the first nine
harmonics. Lee et al. [23] constructed approximations to this
space using physically realizable lighting. Basri and Jacobs [2]
used the harmonic formulation to construct algorithms for
photometric stereo under unknown, arbitrary lighting.
Finally, Thornber and Jacobs [36] and Ramamoorthi and
Hanrahan [32] further examined the effect of specularity and
cast shadows.

3 MODELING IMAGE FORMATION

In this section, we construct an analytically derived repre-
sentation of the images produced by a convex, Lambertian
object illuminated by distant light sources. We restrict
ourselves to convex objects, so we can ignore the effect of
shadows cast by one part of the object on another part of it. We
assume that the surface of the object reflects light according to
Lambert’s law [22], which states that materials absorb light
and reflect it uniformly in all directions. The only parameter
of this model is the albedo at each point on the object, which
describes the fraction of the light reflected at that point. This
relatively simple model applies to diffuse (nonshiny)
materials. It has been analyzed and used effectively in a
number of vision applications.

By a “distant” light source we mean that it is valid to make
the approximation that a light shines on each point in the
scene from the same angle, and with the same intensity (this
also rules out, for example, slide projectors). Lighting,
however, may come from multiple sources, including diffuse

sources such as the sky. We can therefore describe the
intensity of the light as a single function of its direction that
does not depend on the position in the scene. It is important to
note that our analysis accounts for attached shadows, which
occur when a point in the scene faces away from a light source.

While we are interested in understanding the images
created by an object, we simplify this problem by breaking it
into two parts. We use an intermediate representation, the
reflectance function (also called the reflectance map, see Horn
[17, chapters 10, 11]). Given our assumptions, the amount of
light reflected by a white surface patch (a patch with albedo of
one) depends on the surface normal at that point, but not on
its spatial position. For a specific lighting condition, the
reflectance function describes how much light is reflected by
each surface normal. In the first part of our analysis, we
consider the set of possible reflectance functions produced
under different illumination conditions. This analysis is
independent of the structure of the particular object we are
looking at; it depends only on lighting conditions and the
properties of Lambertian reflectance. Then, we discuss the
relationship between the reflectance function and the image.
This depends on object structure and albedo, but not on
lighting, except as it determines the reflectance function. We
begin by discussing the relation of lighting and reflectance.

Before we proceed, we would like to clarify the relation
between the reflectance function and the bidirectional
reflection distribution function (BRDF). The BRDF of a surface
material is a function that describes the ratio of radiance, the
amount of light reflected by the surface in every direction
(measured in power per unit area per solid angle), to
irradiance, the amount of light falling on the surface in every
direction (measured in power per unit area). BRDF is
commonly specified in a local coordinate frame, in which the
surface normal is fixed at the north pole. The BRDF of a
Lambertian surface is constant, since such a surface reflects
light equally in all direction, and it is equal to 1=�. In contrast,
thereflectancefunctiondescribestheradianceofaunitsurface
area given the entire distribution of light in the scene. The
reflectance function is obtained by integrating the BRDF over
all directions of incident light, weighting the intensity of the
light by the foreshortening of the surface as seen from each
lightsource. Inaddition, thereflectancefunctionisspecifiedin
a global, viewer centered coordinate frame in which the viewing
direction is fixed at the north pole. For example, if a scene is
illuminated by a single directional source (a distant point
source) of unit intensity, the reflectance function for every
surface normal will contain the appropriate foreshortening of
the surface with respect to the light source direction scaled by
1=�. (For surface normals that face away from the light source
the reflectance function will vanish.) For simplicity, we omit
below the extra factor of 1=� that arises from the Lambertian
BRDF since it only scales the intensities in the image by a
constant factor.

3.1 Image Formation as the Analog of a
Convolution

Both lighting and reflectance can be described as functions on
the surface of the sphere. We describe the intensity of light as a
function of its direction. This formulation allows us to
consider multiple light sources that illuminate an object
simultaneously from many directions. We describe reflec-
tance as a function of the direction of the surface normal. To
begin, we introduce notation for describing such functions.
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Let S2 denote the surface of a unit sphere centered at the
origin. We will useu; v to denote unit vectors. We denote their
Cartesian coordinates as ðx; y; zÞ, withx2 þ y2 þ z2 ¼ 1. When
appropriate, we will denote such vectors by a pair of angles,
ð�; �Þ, with

u ¼ ðx; y; zÞ ¼ ðcos� sin �; sin� sin �; cos �Þ; ð1Þ

where 0 � � � � and 0 � � � 2�. In this coordinate frame,
the poles are set at ð0; 0;�1Þ, � denotes the angle between u
and ð0; 0; 1Þ, and it varies with latitude, and � varies with
longitude. We will use ð�l; �lÞ to denote a direction of light
and ð�r; �rÞ to denote a direction of reflectance, although we
will drop this subscript when there is no ambiguity.
Similarly, we may express the lighting or reflectance
directions using unit vectors such as ul or vr. Since we
assume that the sphere is illuminated by a distant set of
lights all points are illuminated by identical lighting
conditions. Consequently, the configuration of lights that
illuminate the sphere can be expressed as a nonnegative
function ‘ð�l; �lÞ, giving the intensity of the light reaching
the sphere from each direction ð�l; �lÞ. We may also write
this as ‘ðulÞ, describing lighting direction with a unit vector.

According to Lambert’s law, if a light ray of intensity l
and coming from the direction ul reaches a surface point
with albedo � and normal direction vr, then the intensity, i,
reflected by the point due to this light is given by

i ¼ lðulÞ�maxðul � vr; 0Þ: ð2Þ

If we fix the lighting, and ignore � for now, then the
reflected light is a function of the surface normal alone. We
write this function as rð�r; �rÞ, or rðvrÞ. If light reaches a
point from a multitude of directions, then the light reflected
by the point would be the sum of (or in the continuous case
the integral over) the contribution for each direction. If we
denote kðu � vÞ ¼ maxðu � v; 0Þ, then we can write:

rðvrÞ ¼
Z
S2

kðul � vrÞ‘ðulÞdul; ð3Þ

where
R
S2 denotes integration over the surface of the sphere.

Below, we will occasionally abuse notation and write
kðuÞ to denote the max of zero and the cosine of the angle
between u and the north pole (that is, omitting v means that
v is the north pole). We therefore call k the half-cosine
function. We can also write kð�Þ, where � is the latitude of u,
since k only depends on the � component of u. For any fixed
v, as we vary u (as we do while integrating (3)), then kðu � vÞ
computes the half cosine function centered around v instead
of the north pole. That is, since vr is fixed inside the integral,
we can think of k as a function just of u, which gives the
max of zero and the cosine of the angle between u and vr.

Thus, intuitively, (3) is analogous to a convolution, in
which we center a kernel (the half-cosine function defined by
k), and integrate its product with a signal (‘). In fact, we will
call this a convolution, and write

rðvrÞ ¼ k � ‘ ¼def
Z
S2

kðul � vrÞ‘ðulÞdul: ð4Þ

Note that there is some subtlety here since we cannot, in
general, speak of convolving a function on the surface of the
sphere with an arbitrary kernel. This is because we have
three degrees of freedom in how we position a convolution
kernel on the surface of the sphere, but the output of the

convolution should be a function on the surface of the
sphere, which has only two degrees of freedom. However,
since k is rotationally symmetric this ambiguity disappears.
In fact, we have been careful to only define convolution for
rotationally symmetric k.

3.2 Spherical Harmonics and the Funk-Hecke
Theorem

Just as the Fourier basis is convenient for examining the
results of convolutions in the plane, similar tools exist for
understanding the results of the analog of convolutions on the
sphere. We now introduce these tools, and use them to show
that in producing reflectance, k acts as a low-pass filter.

The surface spherical harmonics are a set of functions that
form an orthonormal basis for the set of all functions on the
surface of the sphere. We denote these functions by Ynm, with
n ¼ 0; 1; 2; . . . and ÿn � m � n:

Ynmð�; �Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

4�

ðnÿ jmjÞ!
ðnþ jmjÞ!

s
Pnjmjðcos �Þeim�; ð5Þ

where Pnm are the associated Legendre functions, defined as

PnmðzÞ ¼
1ÿ z2ð Þm=2

2nn!

dnþm

dznþm
z2 ÿ 1
ÿ �n

: ð6Þ

We say that Ynm is an nth order harmonic.
In the course of this paper, it will sometimes be

convenient to parameterize Ynm as a function of space
coordinates ðx; y; zÞ rather than angles. The spherical
harmonics, written Ynmðx; y; zÞ, then become polynomials
of degree n in ðx; y; zÞ. The first nine harmonics then become

Y00 ¼ 1ffiffiffiffi
4�
p Y10 ¼

ffiffiffiffi
3

4�

q
z

Y e
11 ¼

ffiffiffiffi
3

4�

q
x Y o

11 ¼
ffiffiffiffi
3

4�

q
y

Y20 ¼ 1
2

ffiffiffiffi
5

4�

q
ð3z2 ÿ 1Þ Y e

21 ¼ 3
ffiffiffiffiffiffi
5

12�

q
xz

Y o
21 ¼ 3

ffiffiffiffiffiffi
5

12�

q
yz Y e

22 ¼ 3
2

ffiffiffiffiffiffi
5

12�

q
x2 ÿ y2ð Þ

Y o
22 ¼ 3

ffiffiffiffiffiffi
5

12�

q
xy;

ð7Þ

where the superscripts e and o denote the even and the
odd components of the harmonics, respectively, (so
Ynm ¼ Y e

njmj � iY o
njmj, according to the sign of m; in fact

the even and odd versions of the harmonics are more
convenient to use in practice since the reflectance function
is real).

Because the spherical harmonics form an orthonormal
basis, thismeansthatanypiecewisecontinuousfunction,f ,on
the surface of the sphere can be written as a linear combination
of an infinite series of harmonics. Specifically, for any f ,

fðuÞ ¼
X1
n¼0

Xn
m¼ÿn

fnmYnmðuÞ; ð8Þ

where fnm is a scalar value, computed as:

fnm ¼
Z
S2

fðuÞY �nmðuÞdu; ð9Þ

and Y �nmðuÞ denotes the complex conjugate of YnmðuÞ.
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If we rotate a function f , this acts as a phase shift. Define
for every n the nth order amplitude of f as

An ¼def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2nþ 1

Xn
m¼ÿn

f2
nm

s
: ð10Þ

Then, rotating f does not change the amplitude of a
particular order. It may shuffle values of the coefficients,

fnm, for a particular order, but it does not shift energy
between harmonics of different orders. For example,
consider a delta function. As in the case of the Fourier
transform, the harmonic transform of a delta function has
equal amplitude in every order. If the delta function is at the
north pole, its transform is nonzero only for the zonal

harmonics, in which m ¼ 0. If the delta function is, in
general, position, it has some energy in all harmonics. But in
either case, the nth order amplitude is the same for all n.

Both the lighting function, ‘, and the Lambertian kernel,

k, can be written as sums of spherical harmonics. Denote by

‘ ¼
X1
n¼0

Xn
m¼ÿn

lnmYnm; ð11Þ

the harmonic expansion of ‘, and by

kðuÞ ¼
X1
n¼0

knYn0: ð12Þ

Note that, because kðuÞ is circularly symmetric about the
north pole, only the zonal harmonics participate in this
expansion, andZ

S2

kðuÞY �nmðuÞdu ¼ 0; m 6¼ 0: ð13Þ

Spherical harmonics are useful in understanding the effect

of convolution by k because of the Funk-Hecke theorem,

which is analogous to the convolution theorem. Loosely

speaking, the theorem states that we can expand ‘ and k in

terms of spherical harmonics and, then, convolving them is

equivalent to multiplication of the coefficients of this

expansion.
We will state the Funk-Hecke theorem here in a form that

is specialized to our specific concerns. Our treatment is
based on Groemer [13], but Groemer presents a more
general discussion in which, for example, the theorem is
stated for spaces of arbitrary dimension.

Theorem 1 (Funk-Hecke). Let kðu � vÞ be a bounded, integrable

function on [-1,1]. Then:

k � Ynm ¼ �nYnm

with

�n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�

2nþ 1

r
kn:

That is, the theorem states that the convolution of a
(circularly symmetric) function k with a spherical harmonic
Ymn (as defined in (4)) results in the same harmonic, scaled
by a scalar �n. �n depends on k and is tied directly to kn, the
nth order coefficient of the harmonic expansion of k.

Following the Funk-Hecke theorem, the harmonic ex-
pansion of the reflectance function, r, can be written as:

r ¼ k � ‘ ¼
X1
n¼0

Xn
m¼ÿn

ð�nlnmÞYnm: ð14Þ

This is the chief implication of the Funk-Hecke theorem for
our purposes.

3.3 Properties of the Convolution Kernel

The Funk-Hecke theorem implies that in producing the
reflectance function, r, the amplitude of the light, ‘, at every
order n is scaled by a factor �n that depends only on the
convolution kernel, k. We can use this to infer analytically
what frequencies will dominate r. To achieve this, we treat ‘as
a signal and k as a filter, and ask how the amplitudes of
‘ change as it passes through the filter.

The harmonic expansion of the Lambertian kernel (12)
can be derived (with some tedious manipulation detailed in
Appendix A) yielding

kn ¼

ffiffi
�
p

2 n ¼ 0ffiffi
�
3

p
n ¼ 1

ðÿ1Þ
n
2þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þ�
p

2nðnÿ1Þðnþ2Þ
n
n
2

� �
n � 2; even

0 n � 2; odd:

8>>>><>>>>: ð15Þ

The first few coefficients, for example, are

k0 ¼
ffiffi
�
p

2 � 0:8862 k1 ¼
ffiffi
�
3

p
� 1:0233

k2 ¼
ffiffiffiffi
5�
p

8 � 0:4954 k4 ¼ ÿ
ffiffi
�
p

16 � ÿ0:1108

k6 ¼
ffiffiffiffiffiffi
13�
p

128 � 0:0499 k8 ¼
ffiffiffiffiffiffi
17�
p

256 � ÿ0:0285:

ð16Þ

(k3 ¼ k5 ¼ k7 ¼ 0), jknj approaches zero as Oðnÿ2Þ. A graph
representation of the coefficients is shown in Fig. 3.

The energy captured by every harmonic term is
measured commonly by the square of its respective
coefficient divided by the total squared energy of the
transformed function. The total squared energy in the half
cosine function is given byZ 2�

0

Z �

0

k2ð�Þ sin �d�d� ¼ 2�

Z �
2

0

cos2 � sin �d� ¼ 2�

3
: ð17Þ
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Fig. 3. From left to right: A graph representation of the first 11 coefficients of the Lambertian kernel, the relative energy captured by each of the
coefficients, and the cumulative energy.



(Here, we simplify our computation by integrating over �
and � rather than u. The sin � factor is needed to account for
the varying length of the latitude over the sphere.) Table 1
shows the relative energy captured by each of the first
several coefficients. It can be seen that the kernel is
dominated by the first three coefficients. Thus, a second
order approximation already accounts for ð�4 þ �

3 þ 5�
64Þ= 2�

3 �
99:22% of the energy. With this approximation the half
cosine function can be written as:

kð�Þ � 3

32
þ 1

2
cos �þ 15

32
cos2 �: ð18Þ

The quality of the approximation improves somewhat with

the addition of the fourth order term (99:81%) and

deteriorates to 87:5% when a first order approximation is

used. Fig. 4 shows a 1D slice of the Lambertian kernel and

its various approximations.
The maximum error in the second and fourth order

approximations to k is, respectively, 0:0938 and 0:0586,
while k varies between zero and one. This error occurs
exactly at � ¼ �=2, the point where k’s first derivative is
discontinuous and k becomes most difficult to model using
low-frequency functions. The fact that k has a discontinuous
first derivative, while its approximation does not, suggests
that the two may be perceptually different. This is not a
significant issue for the object recognition methods we
discuss, in which we compare images using their sum of
square differences. However, it may be more relevant to the
use of these results in graphics.

3.4 Approximating the Reflectance Function

Because the Lambertian kernel, k, acts as a low-pass filter,
the high-frequency components of the lighting have little
effect on the reflectance function. This implies that we can
approximate the reflectance function that occurs under any
lighting conditions using only low-order spherical harmo-
nics. In this section, we show that this leads to an
approximation that is always quite accurate.

We achieve a low-dimensional approximation to the
reflectance function by truncating the sum in (14). That is,
we have:

r ¼ k � ‘ ¼
X1
n¼0

Xn
m¼ÿn

ð�nlnmÞYnm �
XN
n¼0

Xn
m¼ÿn

ð�nlnmÞYnm ð19Þ

for some choice of order N . This means considering only the
effects of the low order components of the lighting on the
reflectance function. Intuitively, we know that since kn and,
therefore, �n, is small for large n, this approximation should
be good. However, the accuracy of the approximation also
depends on lnm, the harmonic expansion of the lighting.

To evaluate the quality of the approximation consider
first, as an example, lighting, ‘ ¼ �, generated by a unit
directional (distant point) source at the z direction
(� ¼ � ¼ 0). In this case, the lighting is simply a delta
function whose peak is at the north pole (� ¼ � ¼ 0). It can
be readily shown that

rðvÞ ¼ k � � ¼ kðvÞ: ð20Þ

If the sphere is illuminated by a single directional source in a

direction other than the z direction the reflectance obtained

would be identical to the kernel, but shifted in phase. Shifting

the phase of a function distributes its energy between the

harmonics of the same order n (varying m), but the overall

energy in eachn is maintained. The quality of the approxima-

tion, therefore, remains the same, but now for an Nth order

approximation we need to use all the harmonics with n � N
for all m. Recall that there are 2nþ 1 harmonics in every

order n. Consequently, a first order approximation requires

four harmonics. A second order approximation adds five

more harmonics yielding a 9D space. The third order

harmonics are eliminated by the kernel and, so, they do not

need to be included. Finally, a fourth order approximation

adds nine more harmonics yielding an 18D space.
We have seen that the energy captured by the first few

coefficients ki (1 � i � N) directly indicates the accuracy of
the approximation of the reflectance function when the light
consists of a single point source. Other light configurations
may lead to different accuracy. Better approximations are
obtained when the light includes enhanced diffuse compo-
nents of low frequency. Worse approximations are antici-
pated if the light includes mainly high-frequency patterns.

However, even if the light includes mostly high-
frequency patterns the accuracy of the approximation is
still very high. This is a consequence of the nonnegativity of
light. A lower bound on the accuracy of the approximation
for any light function can be derived as follows.

First, note that Y00 is a constant function; this is just a

DC component. The following derivation shows that for any

nonnegative function the amplitude of the DC component

must be at least as high as the amplitude of any of the other

components. (The amplitude of a component is defined in

(10).) The spherical harmonics satisfy the following useful

identity. For every order n and every point u,

Xn
m¼ÿn

jYnmðuÞj2 ¼
2nþ 1

4�
: ð21Þ

(Compare this identity with (10), this identity implies, for

example, that the delta function centered at u, for any u, has

the same amplitude, 1=
ffiffiffiffiffiffi
4�
p

, at all orders.) From this identity,
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Fig. 4. A slice of the Lambertian kernel (solid) and its approximations (dashed) of first (left), second (middle), and fourth order (right).



it is straightforward to derive the following inequality. For
every ordern and for all pairs of points,u and v, on the sphere,

Xn
m¼ÿn

YnmðuÞY �nmðvÞ
�����

����� � 2nþ 1

4�
: ð22Þ

(Notice that this inequality, in fact, contains an inner product
between the two (2nþ 1-vectors) ðYn;ÿmðuÞ . . .YnmðuÞÞ and
ðYn;ÿmðvÞ . . .YnmðvÞÞ whose magnitudes are equal according
to (21).)

Now, let fðuÞ � 0 be a real, nonnegative function. The
squared amplitudes of f are given by

A2
n ¼

1

2nþ 1

Xn
m¼ÿn

f2
nm; ð23Þ

where fnm are the harmonic coefficients of f defined in (9).
Substituting (9), we obtain

A2
n ¼

1

2nþ 1

Xn
m¼ÿn

Z
S2

fðuÞY �nmðuÞdu
Z
S2

fðvÞY �nmðvÞdv: ð24Þ

Rearranging yields

A2
n ¼

Z
S2

Z
S2

fðuÞfðvÞ

1

2nþ 1

Xn
m¼ÿn

YnmðuÞY �nmðvÞ
 !

dudv:

ð25Þ

Using (22),

A2
n �

1

4�

Z
S2

Z
S2

fðuÞfðvÞdudv: ð26Þ

On the other hand, since the zeroth order harmonic is
constant, Y00ðuÞ ¼ 1=

ffiffiffiffiffiffi
4�
p

, then

A2
0 ¼

1

4�

Z
S2

Z
S2

fðuÞfðvÞdudv: ð27Þ

Consequently, for all n,

An � A0: ð28Þ

As a consequence, in an Nth order approximation the
worst scenario is obtained when the amplitudes in all
frequencies higher than N saturate to the same amplitude
as the DC component, while the amplitude of orders 1 � n �
N are set to zero. In this case, the relative squared energy
becomes

k2
0

k2
0 þ

P1
n¼Nþ1 k

2
n

; ð29Þ

or, using (17),

k2
0

2�
3 ÿ

PN
n¼1 k

2
n

: ð30Þ

Table 1 shows the bound obtained for several different
approximations. It can be seen that using a second order
approximation (involving nine harmonics) the accuracy of the
approximation for any light function exceeds 97.96 percent.
With a fourth order approximation (involving 18 harmonics)
the accuracy exceeds 99.48 percent. Note that the bound

computed in (29) is not tight, since the case that all the higher
order terms are saturated yields a function with negative
values. Consequently, the worst-case accuracy may even be
higher than the bound.

3.5 Generating Harmonic Reflectances

Constructing a basis to the space that approximates the
reflectance functions is straightforward—we can simply use
the low-order harmonics as a basis (see (19)). However, in
many cases, we will want a basis vector for thenm component
of the reflectances to indicate the reflectance produced by a
corresponding basis vector describing the lighting, Ynm. This
makes it easy for us to relate reflectances and lighting, which
is important when we want to enforce the constraint that the
reflectances arise from nonnegative lighting (see Sections 4.2
and 4.3 below). We call these reflectances harmonic reflectances
and denote them by rnm. Using the Funk-Hecke theorem, rnm
is given by

rnm ¼ k � Ynm ¼ �nYnm: ð31Þ

Then, following (19),

r ¼ k � ‘ �
XN
n¼0

Xn
m¼ÿn

lnmrnm: ð32Þ

The first few harmonic reflectances are given by

r00 ¼ �Y00 r1m ¼ 2�
3 Y1m r2m ¼ �

4 Y2m

r4m ¼ �
24Y4m r6m ¼ �

64Y6m r8m ¼ �
128Y8m

ð33Þ

for ÿn � m � n (and r3m ¼ r5m ¼ r7m ¼ 0Þ.

3.6 From Reflectances to Images

Up to this point, we have analyzed the reflectance functions
obtained by illuminating a unit albedo sphere by arbitrary
light. Our objective is to use this analysis to efficiently
represent the set of images of objects seen under varying
illumination. An image of an object under certain illumination
conditions can be constructed from the respective reflectance
function in a simple way: each point of the object inherits its
intensity from the point on the sphere whose normal is the
same. This intensity is further scaled by its albedo.

We can write this explicitly, as follows: Letpi denote the ith
object point. Let ni denote the surface normal at pi, and let �i
denote the albedo of pi. Let the illumination be expanded with
the coefficients lnm (11)). Then the image, Ii of pi is:

Ii ¼ �irðniÞ; ð34Þ
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TABLE 1

The top row shows the energy captured by the nth zonal harmonic for
the Lambertian kernel, k, (0 � n � 10). The middle row shows the
cumulative energy up to order n. This energy represents the quality of
the nth order approximation of rð�; �Þ (measured in relative squared
error). The bottom row shows a lower bound on the quality of this
approximation due to the nonnegativity of the light. The n ¼ 3, 5, 7, and
9 are omitted because they contribute no energy. Relative energies are
given in percents.



where

rðniÞ ¼
X1
n¼0

Xn
m¼ÿn

lnmrnmðniÞ: ð35Þ

Then, any image is a linear combination of harmonic images,

bnm, of the form:

bnmðpiÞ ¼ �irnmðniÞ ð36Þ

with

Ii ¼
X1
n¼0

Xn
m¼ÿn

lnmbnmðpiÞ: ð37Þ

Fig. 5 shows the first nine harmonic images derived from a

3D model of a face.
We would like to now discuss how the accuracy of our

low-dimensional linear approximation to a model’s images
can be affected by the mapping from the reflectance function
to images. We will make two points. In the worst case, this
can make our approximation arbitrarily bad. But, in typical
cases, it will not make our approximation less accurate.

There are two components to turning a reflectance
function into an image. One is that there is a rearrangement
in the x; y position of points. That is, a particular surface
normal appears in one location on the unit sphere, and may
appear in a completely different location in the image. This
rearrangement has no effect on our approximation. We
represent images in a linear subspace in which each
coordinate represents the intensity of a pixel. The decision
as to which pixel to represent with which coordinate is
arbitrary and changing this decision by rearranging the
mapping from ðx; yÞ to a surface normal merely reorders the
coordinates of the space.

The second and more significant difference between
images and reflectance functions is that the distribution of
surface normals in the image may be quite different from the
distribution of surface normals on the sphere. The distribu-
tion of surface normals in the image are determined by the
shape of the object and the viewing direction. Thus, for
example, occlusion ensures that half the surface normals on
the sphere will be facing away from the camera and will not
produce any visible intensities. A polygonal surface will
contain some surface normals, but not others. These normals
may stretch over extended regions in the image. For smooth
surfaces, the curvature at a point will determine the extent to
which its surface normal contributes to the image. The

distribution of surface normals in the image can have quite a

significant effect on the quality of our approximation.
Albedo, in fact, has a similar effect. It may scale the

intensity of each point in the image independently of the

others. This scaling effectively associates a weight to every

pixel that affects the comparison of an image with its

approximation. Thus, a black point (zero albedo) has no

effect on the accuracy of the approximation, and in general

darker pixels affect the accuracy of the approximation less

than brighter pixels do. Overall, these effects are captured by

noticing that the extent to which the reflectance of each point

on the unit sphere influences the image can range from zero to

the entire image.
Note that, in this discussion, we are still ignoring other real

world effects such as shadows cast by nonconvex objects and

materials that deviate somewhat from Lambertian. Likewise,

this discussion ignores the effect of noise. We address these

issues experimentally later, at least for images of faces.
We will next give an example to show that in the worst

case these effects can make our approximation arbitrarily

bad. Consider the case of an object that is a sphere of

constant albedo (this example is adapted from Belhumeur

and Kriegman [4]). If the light is coming from a direction

opposite the viewing direction, it will not illuminate any

visible pixels. We can then shift the light slightly, so that it

illuminates just one pixel on the boundary of the object; by

varying the intensity of the light we can give this pixel any

desired intensity. A series of lights can do this for every

pixel on the rim of the sphere. If there are n such pixels, the

set of images we get fully occupies the positive orthant of an

n-dimensional space. Obviously, points in this space can be

arbitrarily far from any 9D space. What is happening is that

all the energy in the image is concentrated in those surface

normals for which our approximation happens to be poor.
However, generally, things will not be so bad. In

general, occlusion will render an arbitrary half of the

normals on the unit sphere invisible. Albedo variations and

curvature will emphasize some normals, and deemphasize

others. But, in general, the normals whose reflectances are

poorly approximated will not be emphasized more than

any other reflectances, and we can expect our approxima-

tion of reflectances on the entire unit sphere to be about as

good over those pixels that produce the intensities visible

in the image.
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Fig. 5. We show the first nine harmonic images for a model of a face. The top row contains the zeroth harmonic (left) and the three first order harmonic

images (right). The second row shows the images derived from the second harmonics. Negative values are shown in black, positive values in white.



4 RECOGNITION

We have developed an analytic description of the linear
subspace that lies near the set of images that an object can
produce. We now show how to use this description to
recognize objects. Although our method is suitable for general
objects, we will give examples related to the problem of face
recognition. We will assume that a database of models of
3D objects that includes their surface normals and albedos is
available. Our approach will allow us to recognize the objects
under complicated lightings that include combinations of
point and extended sources. Below, we assume that the pose
of the object is already known, but that its identity and lighting
conditions arenot.Forexample,wemaywishto identifya face
that is known to be facing the camera. Or, we may assume that
either a human or an automatic system have identified
features, such as the eyes and the tip of the nose, that allow us
to determine pose for each face in the database, but that the
database is too big to allow a human to select the best match.

Recognition proceeds by comparing a new query image to
each model in turn. To compare to a model, we compute the
distance between the query image and the nearest image that
the model can produce. We present two classes of algorithms
that vary in their representation of a model’s images. The
linear subspace can be used directly for recognition, or we can
restrict ourselves to a subset of the linear subspace that
corresponds to physically realizable lighting conditions.

We will stress the advantages we gain by having an
analytic description of the subspace available, in contrast to
previous methods in which PCA could be used to derive a
subspace from a sample of an object’s images. One
advantage of an analytic description is that we know this
provides an accurate representation of an object’s possible
images, not subject to the vagaries of a particular sample of
images. A second advantage is efficiency; we can produce a
description of this subspace much more rapidly than PCA
would allow. The importance of this advantage will depend
on the type of recognition problem that we tackle. In
particular, we are interested in recognition problems in
which the position of an object is not known in advance, but
can be computed at runtime using feature correspondences.
In this case, the linear subspace must also be computed at
runtime, and the cost of doing this is important. Finally, we
will show that when we use a 4D linear subspace, an
analytic description of this subspace allows us to incorpo-
rate the constraint that the lighting be physically realizable
in an especially simple and efficient way.

4.1 Linear Methods

The most straightforward way to use our prior results for
recognition is to compare a novel image to the linear subspace
of images that correspond to a model, as derived by our
harmonic representation (D’Zmura [9] also makes this
suggestion). To do this, we produce the harmonic basis
images of each model, as described in Section 3.6. Given an
image I we seek the distance from I to the space spanned by
the basis images. LetBdenote the basis images. Then, we seek
a vector a that minimizes kBaÿ Ik.B is p� r, p is the number
of points in the image, and r is the number of basis images
used. As discussed above, nine is a natural value to use for r,
but r ¼ 4 provides greater efficiency, while r ¼ 18 offers even
better potential accuracy. Every column of B contains one
harmonic image bnm. These images form a basis for the linear
subspace, though not an orthonormal one. So we apply a

QR decomposition toB to obtain such a basis. We computeQ,
a p� r matrix with orthonormal columns, and R, an r� r
matrix so that QR ¼ B and QTQ is an r� r identity matrix.
Then Q is an orthonormal basis for B, and QTQI is the
projection of I into the space spanned by B. We can then
compute the distance from the image, I, and the space
spanned byB as kQQTI ÿ Ik. The cost of theQR decomposi-
tion is Oðpr2Þ, assuming p >> r.

A number of previous methods have performed recogni-
tion by measuring the distance from an image to a linear
subspace that represents a model’s possible images. Some
prior methods have performed PCA on a sample of images to
find a linear subspace representing an object (see also
Belhumeur et al. [3] for discussion of a different linear
projection using the Fisher linear discriminant). Hallinan [15]
performed experiments indicating that PCA can produce a
five- or six-dimensional subspace that accurately models a
face. Epstein et al. [10] and Yuille et al. [40] describe
experiments on a wider range of objects that indicate that
images of Lambertian objects can be approximated by a linear
subspace of between three and seven dimensions. Specifi-
cally, the set of images of a basketball were approximated to
94.4 percent by a 3D space and to 99.1 percent by a 7D space,
while the images of a face were approximated to 90.2 percent
bya3Dspaceandto95.3percentbya7Dspace.Georghiadeset
al. [12] renderthe imagesofanobjectandfindan11Dsubspace
that approximates these images.

These numbers are roughly comparable to the 9D space
that, according to our analysis, approximates the images of
a Lambertian object. Additionally, we note that the basis
images of an object will not generally be orthogonal and can
in some cases be quite similar. For example, if the z
components of the surface normals of an object do not vary
much, then some of the harmonic images will be quite
similar, such as b00 ¼ � versus b10 ¼ �z. This may cause
some components to be less significant, so that a lower-
dimensional approximation can be fairly accurate (see a
recent analysis by Ramamoorthi [30]).

When s sampled images are used (typically s >> r), with
s << pPCA requiresOðps2Þ. Also, in MATLAB, PCA of a thin,
rectangular matrix seems to take exactly twice as long as its
QR decomposition. Therefore, in practice, PCA on the matrix
constructed by Georghiades et al. would take about 150 times
as long as using our method to build a 9D linear approxima-
tion to a model’s images (this is for s ¼ 100 and r ¼ 9. One
might expect p to be about 10,000, but this does not affect the
relativecostsof themethods). Thismaynotbe toosignificant if
pose is known ahead of time and this computation takes place
offline.Butwhenpose iscomputedatruntime, theadvantages
of our method can become very great.

It is also interesting to compare our method to another
linear method, due to Shashua [34] and Moses [26]. Shashua
points out that in the absence of attached shadows, every
possible image of an object is a linear combination of the x,
y, and z components of the surface normals, scaled by the
albedo. He therefore proposes using these three compo-
nents to produce a 3D linear subspace to represent a
model’s images. Notice that these three vectors are
identical, up to a scale factor, to the basis images produced
by the first order harmonics in our method.

While this equivalence is clear algebraically, we can also
explain it as follows: The first order harmonic images are
images of any object subjected to a lighting condition
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described by a single harmonic. The Funk-Hecke theorem
ensures that all components of the kernel describing the
reflectance function will be irrelevant to this image except
for the first order components. In Shashua’s work, the basis
images are generated by using a point source as the lighting
function which contains all harmonics. But the kernel used
is the full cosine function of the angle between the light and
the surface normal. This kernel has components only in the
first harmonic. So all other components of the lighting are
irrelevant to the image. In either case, the basis images are
due only to the first set of harmonics.

We can therefore interpret Shashua’s method as also
making an analytic approximation to a model’s images, using
low order harmonics. However, our previous analysis tells us
that the images of the first harmonic account for only
50 percent of the energy passed by the half-cosine kernel.
Furthermore, in the worst case it is possible for the lighting to
contain no component in the first harmonic. Most notably,
Shashua’s method does not make use of the DC component of
the images, i.e., of the zeroth harmonic. These are the images
produced by a perfectly diffuse light source. Nonnegative
lighting must always have a significant DC component.
Koenderink and van Doorn [21] have suggested augmenting
Shashua’s method with this diffuse component. This results
in a linear method that uses the four most significant
harmonic basis images, although Koenderink and van Doorn
propose this as apparently an heuristic suggestion, without
analysis or reference to a harmonic representation of lighting.

Note finally that, as with our method, the basis proposed
by Shashua to represent the set of images of the object, the
three components of the surface normals scaled by the
albedo, do not represent physically realizable images, since
they may contain negative values. Shashua suggested
replacing this basis with a basis composed of three images
obtained under directional sources. This physically realiz-
able basis is accurate only if pixels that face away from the
light source are discarded.

4.2 Enforcing Nonnegative Light

When we take arbitrary linear combinations of the harmonic
basis images, we may obtain images that are not physically
realizable. This is because the corresponding linear combina-
tion of the harmonics representing lighting may contain
negative values. That is, rendering these images may require
negative “light,” which of course is physically impossible. In
this section, we show how to use the basis images while
enforcing the constraint of nonnegative light. Belhumeur and
Kriegman [4] have shown that the set of images of an object
produced by nonnegative lighting is a convex cone in the
space of all possible images. They call this the illumination
cone. We show how to compute approximations to this cone in
the space spanned by the harmonic basis images.

Specifically, given an image I, we attempt to minimize
kBaÿ Ik subject to the constraint that the light is nonnegative
everywhere along the sphere. A straightforward method to
enforce positive light is to infer the light from the images by
inverting the convolution. This would yield linear constraints
in the components of a, Ha � 0, where the columns of H
contain the spherical harmonics Ynm. Unfortunately, this
naive method is problematic since the light may contain
higher order terms that cannot be recovered from a low order
approximation of the images of the object. In addition, the
harmonic approximation of nonnegative light may at times

include negative values. Forcing these values to be non-
negative will lead to an incorrect recovery of the light. Below
we describe a different method in which we project the
illumination cone onto the low-dimensional space and use
this projection to enforce nonnegative lighting.

We first present a method that can use any number of
harmonic basis images. A nonnegative lighting function can
be written as a nonnegative combination of delta functions,
each representing a directional source. Denote by ��0�0

the
function returning a nonzero value at ð�0; �0Þ, 0 elsewhere,
and integrating to 1. This lighting function represents a
distant point source at direction ð�0; �0Þ. To project the delta
function onto the first few harmonics, we need to look at the
harmonic transform of the delta function. Since the inner
product of ��0�0

with a function f returns simply fð�0; �0Þ, we
can conclude that the harmonic transform of the delta
function is given by

��0�0
¼
X1
n¼0

Xn
m¼ÿn

Ynmð�0; �0ÞYnm: ð38Þ

The projection of the delta function onto the first few
harmonics is obtained by taking the sum only over the first
few terms.

Suppose now that a nonnegative lighting function ‘ð�; �Þ is
expressed as a nonnegative combination of delta functions

‘ ¼
XJ
j¼1

aj��j�j ; ð39Þ

for some J . Obviously, due to the linearity of the harmonic
transform, the transform of ‘ is a nonnegative combination of
the transforms of the delta functions with the same
coefficients. That is,

‘ ¼
XJ
j¼1

aj
X1
n¼0

Xn
m¼ÿn

Ynmð�j; �jÞYnm: ð40Þ

Likewise, the image of an object illuminated by ‘ can be
expressed as a nonnegative combination as follows:

I ¼
XJ
j¼1

aj
X1
n¼0

Xn
m¼ÿn

Ynmð�j; �jÞbnm; ð41Þ

where bnm are the harmonic images defined in the previous
section.

Given an image our objective is to recover the nonnegative
coefficients aj. Assume we consider an approximation of
order N , and denote the number of harmonics required for
spanning the space by r ¼ rðNÞ (e.g., ifN ¼ 2, then r ¼ 9). In
matrix notation, denote the harmonic functions by H, H is
s� r, where s is the number of sample points on the sphere. In
practice, we use a uniform tesselation of the sphere with
s ¼ 122. The columns of H contain a sampling of the
harmonic functions, while its rows contain the transform of
the delta functions. Further, denote byB the basis images,B is
p� r, where p is the number of points in the image. Every
column of B contains one harmonic image bnm. Finally,
denote a ¼ ða1; . . . ; asÞT . Then, our objective is to solve the
nonnegative least-squares problem:

min
a
kBHTaÿ Ik s:t: a � 0: ð42Þ
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Here, HTa is a ð1� rÞ vector that represents the r low-
frequency harmonic components of the lighting. BHTa, then
gives an image of our object under this lighting. We can
further project the image to the r-dimensional space spanned
by the harmonic images and solve the optimization problem
in this smaller space. To do so, we apply a QR decomposition
to B, as described previously. We obtain:

min
a
kRHTaÿQTIk s:t: a � 0: ð43Þ

Now, R is r� r and QTI is an r-vector. Once we have solved
for a, we measure error as the distance betweenBHTa and I.

Note that this method is similar to that presented in
Georghiades et al. [11]. The primary difference is that we
work in a low-dimensional space constructed for each
model using its harmonic basis images. Georghiades et al.
perform a similar computation after projecting all images
into a 100-dimensional space constructed using PCA on
images rendered from models in a 10-model database. Also,
we do not need to explicitly render images using a point
source, and project them into a low-dimensional space. In
our representation, the projection of these images is
achieved simply through HT .

4.3 Recognition with Four Harmonics

A further simplification can be obtained if the set of images
of an object is approximated only up to first order. Four
harmonics are required in this case. One is the DC
component, representing the appearance of the object under
uniform ambient light and three are the basis images also
used by Shashua. Again, we attempt to minimize kBaÿ Ik
(now B is p� 4) subject to the constraint that the light is
nonnegative everywhere along the sphere.

As before, we determine the constraints by projecting the
delta functions onto the space spanned by the first four
harmonics. However, now this projection takes a particu-
larly simple form. Consider a delta function ��0�0

. Its first
order approximation is given by

��0�0
�
X1

n¼0

Xn
m¼ÿn

Ynmð�0; �0ÞYnm: ð44Þ

Using space coordinates this approximation becomes

��0�0
ðx; y; zÞ

� 1

4�
þ 3

4�
ðx sin �0 cos�0 þ y sin �0 sin�0 þ z cos �0Þ:

ð45Þ

Let

‘ � a0 þ a1xþ a2yþ a3z ð46Þ

be the first order approximation of a nonnegative lighting
function ‘. ‘ is a nonnegative combination of delta
functions. It can be readily verified that such a combination
cannot decrease the zero order coefficient relative to the first
order ones. Consequently, any nonnegative combination of
delta functions must satisfy

9a2
0 � a2

1 þ a2
2 þ a2

3: ð47Þ

(Equality is obtained when the light is a single delta
function, see (45).) Therefore, we can express the problem of
recognizing an object with a 4D harmonic space as
minimizing kBaÿ Ik subject to (47).

In the four harmonic cases, the harmonic images are just
the albedos and the components of the surface normals
scaled by the albedos, each scaled by some factor. It is
therefore natural to use those directly and hide the scaling
coefficients within the constraints. Let I be an image of the
object illuminated by ‘, then, using (33) and (36),

I � �a0�þ
2�

3
ða1�nx þ a2�ny þ a3�nzÞ; ð48Þ

where � and ðnx; ny; nzÞ are, respectively, the albedo and the
surface normal of an object point. Using the unscaled basis
images, �, �nx, �ny, and �nz, this equation can be written as:

I � b0�þ b1�nx þ b2�ny þ b3�nz; ð49Þ

with b0 ¼ �a0 and bi ¼ 2�
3 ai (1 � i � 3). Substituting for the

ais in (47), we obtain

9b2
0

�2
� 9

4�2
ðb2

1 þ b2
2 þ b2

3Þ; ð50Þ

which simplifies to

4b2
0 � b2

1 þ b2
2 þ b2

3: ð51Þ

Consequently, to find the nearest image in the space spanned
by the first four harmonic images with nonnegative light we
may minimize the difference between the two sides of (49)
subject to (51). We solve the problem of minimizing kBaÿ Ik
subject to this constraint by first performing the minimization
ignoring the constraint. If the solution we obtain obeys the
constraint, we are done. If not, we know that the minimum
occurs when the constraint is satisfied at equality. This
minimization problem has the general form:

min
x
kAxÿ bk s:t: xTBx ¼ 0: ð52Þ

We show in Appendix B that by diagonalizing A and B

simultaneously and introducing a Lagrange multiplier the
problem can be solved by finding the roots of a sixth degree
polynomial with a single variable, the Lagrange multiplier.
With this manipulation, solving the minimization problem is
straightforward.

4.4 Experiments

We have experimented with these recognition methods using
a database of faces collected at NEC, Japan. The database
contains models of 42 faces, each includes the 3D shape of the
face (acquired using a laser scanner) and estimates of the
albedos in the red, green and blue color channels. As query
images, we use 42 images each of ten individuals, taken across
seven different poses and six different lighting conditions
(shown in Fig. 6). In our experiment, each of the query images
is compared to each of the 42 models, and then the best
matching model is selected.

In all methods, we first obtain a 3D alignment between the
model and the image, using the algorithm of Blicher and Roy
[5]. In brief, features on the faces were identified by hand and,
then, a 3D rigid transformation was found to align the
3D features with the corresponding 2D image features.

In all methods, we only pay attention to image pixels that
have been matched to some point in the 3D model of the face.
We also ignore image pixels that are of maximum intensity,
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since these may be saturated, and provide misleading values.
Finally, we subsample both the model and the image,
replacing each m�m square with its average values.
Preliminary experiments indicate that we can subsample
quite a bit without significantly reducing accuracy. In the
experiments below, we ran all algorithms subsampling with
16� 16 squares, while the original images were 640� 480.

Our methods produce coefficients that tell us how to
linearly combine the harmonic images to produce the
rendered image. These coefficients were computed on the
sampled image, but then applied to harmonic images of the
full, unsampled image. This process was repeated sepa-
rately for each color channel. Then, a model was compared
to the image by taking the root mean squared error, derived
from the distance between the rendered face model and all
corresponding pixels in the image.

Fig. 7 shows the Receiver Operating Characteristic (ROC)
curves for three recognition methods: the 9D linear method,
and the methods that enforce positive lighting in 9D and 4D.
The curves show the fraction of query images for which the
correctmodel isclassifiedamong thetopk, askvaries from1to
40. The 4D positive lighting method performs significantly
less well than the others, getting the correct answer about
60 percent of the time. However, it is much faster, and seems to
be quite effective under the simpler pose and lighting
conditions. The 9D linear method and 9D positive lighting
method each pick thecorrect model first 86 percent of the time.
With this data set, the difference between these two algo-
rithms is quite small compared to other sources of error. These
may include limitations in our model for handling cast
shadows and specularities, but also includes errors in the
model building and pose determination processes. In fact, on
examining our results we found that one pose (for one person)
was grossly wrong because a human operator selected feature
points in the wrong order. We eliminated the six images

(under six lighting conditions) that used this pose from our

results.

5 FUTURE WORK: SPECULARITY

In general, it is a subject of future work to consider how
this sort of analysis may be applied to more complex
imaging situations that include specularities and cast
shadows. However, in this section, we will make one basic
remark about these situations. These issues are further
analyzed in Thornber and Jacobs [36] and Ramamoorthi
and Hanrahan [32].

We note that a low-dimensional set of images can also
result when the lighting itself is low dimensional. This can
occur when the lights are all diffuse, as when the sun is behind
clouds or lighting is due to interreflections. In this case, the
lighting itself may be well approximated by only low-order
harmonics. If the lighting is a linear combination of a small
number of harmonics, then images will be a linear combina-
tion of those produced when the scene is rendered separately
by each of these harmonics. This low-dimensionality is due
simply to the linearity of lighting, the fact that the sum of two
images produced by any two lighting conditions will be the
image produced by the sum of these lighting conditions.
Therefore, this will be true under the most general imaging
assumptions, including cast shadows and specularities.

We also note that with specular objects, the bidirectional
reflection distribution function (BRDF) is generally much
more sharply peaked than it is with the cosine function. This
provides the intuition that specular objects will be more
affected by high-order harmonic components of the lighting.
In the extreme case of a mirror, the entire lighting function
passes into the reflectance function, preserving all compo-
nents of the lighting. Therefore, we expect that for specular
objects, a low-order approximation to the image set will be
less accurate. A representation in terms of harmonic images
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may still provide a useful approximation, however. This is

consistent with the experiments of Epstein et al. [10].

6 CONCLUSIONS

Lighting can be arbitrarily complex. But, in many cases, its

effect is not. When objects are Lambertian, we show that a

simple, nine-dimensional linear subspace can capture the set

of images they produce. This explains prior empirical results.

It also gives us a new and effective way of understanding the

effects of Lambertian reflectance as that of a low-pass filter on

lighting.
Moreover, we show that this 9D space can be directly

computed from a model, as low-degree polynomial functions

of its scaled surface normals. This description allows us to

produce efficient recognition algorithms in which we know

we are using an accurate approximation to the model’s

images. We can compare models to images in a 9D space that

captures at least 98 percent of the energy of all the model’s

images. We can enforce the constraint that lighting be positive

by performing a nonnegative least-squares optimization in

this 9D space. Or, if we are willing to settle for a less accurate

approximation, we can compute the positive lighting that

best matches a model to an image by just solving a six-degree

polynomial in one variable. We evaluate the effectiveness of

all these algorithms using a database of models and images of

real faces.

APPENDIX A

THE HARMONIC TRANSFORM OF THE LAMBERTIAN

KERNEL

In this appendix, we derive an analytic expression of

the harmonic expansion of the Lambertian kernel,

kð�Þ ¼ maxðcos �; 0Þ. The content of this appendix was

derived independently also by Ramamoorthi and Hanra-

han [31]. According to (12), this expansion is given by

k ¼
X1
n¼0

knYn0;

with

kn ¼ 2�

Z �

0

kð�ÞYn0ð�Þ sin �d�:

(Note that the zonal harmonics Yn0 depend only on �.)

We next determine an explicit form for the coefficients kn.

First, we can limit the integration to the positive portion of the

cosine function by integrating over � only to �=2, that is,

kn ¼ 2�

Z �
2

0

cos �Yn0ð�Þ sin �d�:

Now,

Yn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

4�

r
Pnðcos �Þ;

where PnðzÞ is the associated Legendre function of order n

defined by

PnðzÞ ¼
1

2nn!

dn

dzn
ðz2 ÿ 1Þn:

Substituting z ¼ cos �, we obtain

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ�

p Z 1

0

zPnðzÞdz:

We now turn to computing the integralZ 1

0

zPnðzÞdz:

Integrating by parts yields,

1

2nn!
z
dnÿ1

dznÿ1
z2 ÿ 1
ÿ �n���1

0
ÿ
Z 1

0

dnÿ1

dznÿ1
ðz2 ÿ 1Þndz

� �
:

The first term vanishes and we are left with

ÿ 1

2nn!

Z 1

0

dnÿ1

dznÿ1
z2 ÿ 1
ÿ �n

dz;

which, when integrated, yields

ÿ 1

2nn!

dnÿ2

dznÿ2
z2 ÿ 1
ÿ �n���0

1
:

This formula vanishes for z ¼ 1 and, so, we obtain

1

2nn!

dnÿ2

dznÿ2
z2 ÿ 1
ÿ �n����

z¼0

:

Now,

ðz2 ÿ 1Þn ¼
Xn
k¼0

n

k

� �
ðÿ1Þnÿkz2k:

Whenwe take thenÿ 2derivativeall termswhose exponent is

less than nÿ 2 disappear. Moreover, since we are evaluating

the derivative at z ¼ 0 all the terms whose exponent is larger

than nÿ 2 vanish. Thus, only the term whose exponent is

2k ¼ nÿ 2 survives. Denote the respective coefficient by bnÿ2,

then, when n is odd bnÿ2 ¼ 0, and when n is even

bnÿ2 ¼
n

n
2 ÿ 1

� �
ðÿ1Þ

n
2þ1:

In this case,

dnÿ2

dznÿ2
ðz2 ÿ 1Þn

���
z¼0
¼ ðnÿ 2Þ!bnÿ2;
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and we obtainZ 1

0

zPnðzÞdz ¼
ðÿ1Þ

n
2þ1

2nðnÿ 1Þðnþ 2Þ
n
n
2

� �
:

The above derivation holds for n � 2. The special cases
that n ¼ 0 and n ¼ 1 should be handled separately. In the
first case, P0ðzÞ ¼ 1 and, in the second case, P1ðzÞ ¼ z. For
n ¼ 0, the integral becomes

R 1
0 zdz ¼ 1=2, and for n ¼ 1 it

becomes
R 1

0 z
2dz ¼ 1=3. Consequently,

kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ�

p Z 1

0

zPnðzÞdz

¼

ffiffi
�
p

2 n ¼ 0ffiffi
�
3

p
n ¼ 1

ðÿ1Þ
n
2þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ1Þ�
p

2nðnÿ1Þðnþ2Þ
n
n
2

� �
n � 2; even

0 n � 2; odd:

8>>>>><>>>>>:
Finally, we analyze the asymptotic behavior of kn. For

even n � 2,

jknj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ�

p
2nðnÿ 1Þðnþ 2Þ

n
n
2

� �
:

Using the Stirling equation, as n!1, n! � nneÿn
ffiffiffiffiffiffiffiffi
2�n
p

.
This implies that ðn=2Þ! � nn

2ð2eÞ
ÿn
2
ffiffiffiffiffiffi
�n
p

, and we obtain,

n
n
2

� �
�

ffiffiffiffiffiffi
2

�n

r
2n:

Thus,

jknj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ�

p
2nðnÿ 1Þðnþ 2Þ

n
n
2

� �
� 2

ðnÿ 1Þðnþ 2Þ � Oðn
ÿ2Þ:

APPENDIX B

RECOGNITION WITH FOUR HARMONICS

Finding the nearest image in the 4D harmonic space subject to

the constraint that the light is nonnegative has the general

form

min
x
kAxÿ bk s:t: xTBx ¼ 0;

withA ðn� 4Þ, b ðn� 1Þ, andB ð4� 4Þ. In this representation,
the columns of A contain the unscaled harmonic images, b is
the image to be recognized andB ¼ diagð4;ÿ1;ÿ1;ÿ1Þ. (The
method we present below, however, can be used with an
arbitrary nonsingular matrix B.)

First, we can solve the linear system

min
x
kAxÿ bk

and check if this solution satisfies the constraint. If it does,
we are done. If not, we must seek a minimum that occurs
when the constraint is satisfied at equality. We will divide
the solution into two parts. In the first part we will convert
the problem to the form:

min
z
kzÿ ck s:t: zTDz � 0;

Later, we will show how to turn the new problem into a
sixth degree polynomial in a single variable.

Step 1. First, we can assume without loss of generality that
b resides in the column space of A, since the component of b
orthogonal to this space does not affect the solution to the
problem. Furthermore, since b lies in the column space of A
we can assume thatA is 4� 4 full rank and b is 4� 1. This can
be achieved, for example, using a QR decomposition. Now,
define b0 such that Ab0 ¼ b (this is possible because A is full
rank). Then,Axÿ b ¼ Aðxÿ b0Þ, implying that our problem is
equivalent to:

min
x
kAðxÿ b0Þk s:t: xTBx ¼ 0:

Using the method presented in Golub and van Loan [14] (see

the second edition, pp. 466-471, especially Algorithm 8.7.1),

we simultaneously diagonalizeATA andB. This will produce

a nonsingular matrix X such that XTATAX ¼ I and

XTBX ¼ D, I denotes the identity matrix, and D is a

4� 4 diagonal matrix. Thus, we obtain

min
x
kXÿ1ðxÿ b0Þk s:t: xTXÿTDXÿ1x ¼ 0;

where Xÿ1 denotes the inverse of X, and XÿT denotes its
transpose. Denote z ¼ Xÿ1x and c ¼ Xÿ1b0, then we obtain

min
z
kzÿ ck s:t: zTDz ¼ 0:

This has the desired form.
Step 2. At this point, we attempt to solve a problem of

the form

min
z
kzÿ c k s:t: zTDz ¼ 0:

We solve this minimization problem using Lagrange

multipliers. That is,

min
fz;�g
kzÿ c k2 þ �zTDz:

Taking the derivatives with respect to z and �, we get

zÿ cþ �Dz ¼ 0;

and

zTDz ¼ 0:

From the first equation, we get

z ¼ ðI þ �DÞÿ1c:

Since D is diagonal, the components of z are given by

zi ¼
ci

1þ �di
;

where z ¼ ðz1; . . . ; z4Þ, c ¼ ðc1; . . . ; c4Þ, and D ¼ diag

ðd1; . . . ; d4Þ. The constraint zTDz ¼ 0, thus becomes

X4

i¼1

c2
i di

ð1þ �diÞ2
¼ 0;

which, after multiplying out the denominator, becomes a

sixth degree polynomial in �. This polynomial can be

efficiently and accurately solved using standard techniques
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(we use the MATLAB function roots). We plug in all

solutions to determine x, as indicated above, and choose the

real solution that minimizes our optimization criteria.
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